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Abstract—In the numerical simulation of atmospheric transport-chemistry processes, a major task is the
integration of the stiff systems of ordinary differential equations describing the chemical transformations. It
is therefore of interest to systematically search for stiff solvers which can be identified as close to optimal for
atmospheric applications. In this paper we continue our investigation from Sandu et al. (1996, CWI Report
NM-R9603 and Report in Comput. Math., No. 85) and compare eight solvers on a set of seven box-models
used in present day models. The focus is on Rosenbrock solvers. These turn out to be very well suited for
our application when they are provided with highly efficient sparse matrix techniques to economize on the
linear algebra. Two of the Rosenbrock solvers tested are from the literature, viz. RODAS and ROS4, and two
are new and specially developed for air quality applications, viz. RODAs3 and ROS3. ) 1997 Elsevier Science
Ltd.
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1. INTRODUCTION

To better understand the transport and fate of trace
gases and pollutants in the atmosphere, compre-
hensive air quality models have been developed.
For their numerical solution, very often the operator
splitting approach is followed. A major computa-
tional task is then the numerical integration of the
stif ODE (ordinary differential equation) systems
describing the chemical transformations. This in-
tegration must be carried out repeatedly at all
spatial grid points for all split intervals chosen, so
that the model runs readily require an enormous
amount of integrations. It is therefore of interest to
systematically search for stiff ODE solvers which for
atmospheric applications can be identified as close to
optimal. In this paper we continue our search from

(Sandu et al, 1996b), where a large number of
box-model tests were carried out with nine solvers.
Among these were dedicated explicit methods and
general purpose solvers from the numerical stiff ODE
field, all provided with sparse matrix techniques to
economize on the numerical algebra operations.

Three main conclusions were drawn in (Sandu et al.,
1996b):

e All sparse general solvers work quite efficiently on
all test problems, although their ranking relative to
each other depends on the test problem. Compared
were the BDF (Backward Differentiation) solvers
VODE (Brown et al., 1989) and LSODES (Hindmarsh,
1983), the Runge-Kutta solver SDIRK4 (Hairer and
Wanner, 1991) and the Rosenbrock solver RODAS
(Hairer and Wanner, 1991).

3459



3460

e TWOSTEP (Verwer, 1994; Verwer et al., 1996b) is
by far the best within the class of dedicated ex-
plicit methods. It outperforms a number of QssA
solvers, often by a wide margin. However, it is in
general less efficient than sparse implicit solvers.
The code is advocated for gas-phase problems
only and, like all other dedicated explicit solvers
tested, not capable of treating gas-liquid phase
chemistry.

e Sparse RODAS is competitive to all solvers tested
and often is the fastest for low to moderate accu-
racies.

RODAS partly owes its competitiveness to its one-
step nature. This is important in view of the large
number of restarts carried out in the box-model runs.
Restarts must be considered because the solvers are
examined for application in an operator splitting ap-
proach. The multistep BDF (Gear) codes are then less
attractive since their growth in step size is limited by
stability considerations.

Our experience with RODAS is in line with results
from (Hairer and Wanner, 1991), where for a number
of stiff ODEs from other applications RODAS was
shown to be competitive with other solvers for low to
modest accuracies. Because for atmospheric applica-
tions the greatest interest lies in high efficiency for
very low accuracy (two figures at most), it is wor-
thwhile to continue our search within the class of
Rosenbrock methods. Thus, the aim of this paper is to
assess whether other Rosenbrock solvers can be found
which, for our specific purpose, constitute an im-
provement over RODAS in terms of efficiency.

The paper is organized as follows. In Section 2 we
briefly review our test set from (Sandu et al., 1996b)
and describe a new test problem. This test problem is
also solved with the EBI (Euler Backward Iterative)
method proposed in Hertel et al. (1993). Sec-
tion 3 contains a brief introduction to Rosenbrock
methods, put together for the convenience of readers
from the atmospheric research community. An appen-
dix to this section is added for those readers who wish
to learn more on Rosenbrock methods. In Section 4
we discuss all eight solvers which were tested. These
include the two Rosenbrock solvers RODAS and ROS4
from (Hairer and Wanner, 1991) and two new Rosen-
brock solvers which were developed for this bench-
mark, viz. RODAS3 and ROS3. The special purpose
solver EBI from Hertel et al. (1993) was applied to the
first test problem only, since it is dependent on the
chemical mechanism. For the purpose of a wider
comparison we also present results for the extrapola-
tion code SEULEX from Hairer and Wanner (1991) and
for TWOSTEP and VODE. The latter two were also
tested in Sandu ez al. (1996b). Section 5 describes the
set up of the experiments and Section 6 contains all
the test results. The final section summarizes the main
conclusions.

To enable interested readers to further extend this
benchmark comparison using their own solvers, as
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well as to extend our problem set with other challeng-
ing example problems from atmospheric chemistry,
all the software we have used for the problems and the
solvers have been put on the ftp-site (CGRER ftp site,
1996).

2. THE BENCHMARK PROBLEMS

The test set used in this paper consists of seven
box-model problems. Except for number one, i.e.
Problem A, all remaining problems, ie. Problems
B-G, are almost identical to those used in Sandu
et al. (1996b). To save space we therefore present B~-G
only very briefly and refer to Sandu et al. (1996b) for
a complete description of these models. All problems
were run for five days. This time interval is sufficiently
large for taking into account several diurnal cycles of
the photochemical reactions. The unit of time is sec-
onds and the unit for the concentrations is number of
molecules per cm>. The problems were uniformly
coded in FORTRAN using the symbolic preproces-
sor KPP (Damian-Iordache and Sandu, 1995). This
uniformity is important for a meaningful inter-
comparison. An exception exists for problem A. The
FORTRAN program of the EBI implementation for this
problem was obtained from Dentener (1993, 1996).
Tables containing initial concentrations and emission
values of the most important species can be found in
Sandu et al. (1996b).

Problem A: The TMk model. The problem was
borrowed from Dentener (1993, 1996). It describes the
reduced CH,/CO/HO,/NO, chemistry and is used in
the global dispersion model T™Mk (Heimann, 1983). It
consists of 36 reactions between 18 species of which
2 were held fixed, namely H,O and O,. Since new
values of the photolysis rates are available every
40 min, we split accordingly the five day period (see
Section 5 for more details). The simulated conditions
correspond to a polluted air parcel in summer time, at
45° north latitude and at ground level (pressure
= 1000 mbar). We have included emissions of NO at
a constant level of 10¢ mlc cm ™35!, More informa-
tion about this model can be found in Dentener
(1993). We note that for this small problem (17 com-
ponents) the exploitation of sparsity results in limited
benefits. The Jacobian matrix has 90 non-zero entries
and 93 after the factorization.

Problems B and C: The CBM-IV model. These are
based on the Carbon Bond Mechanism IV (Gery
et al., 1989) consisting of 32 chemical species involved
in 70 thermal and 11 photolytic reactions. Test prob-
lem B describes an urban scenario and simulates
a heavily polluted atmosphere. Test problem C de-
scribes a rural atmosphere.

Problems D and E: The AL model. Problems D
and E employ the kinetic mechanism that is presently
used in the STEM-II model (Carmichael et al., 1986),
consisting of 84 non-constant chemical species in-
volved in 142 thermal and 36 photolytic reactions.
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The mechanism, based on the work of Lurmann
et al. (1986) and Atkinson et al. (1989), can be used
to study the chemistry of both highly polluted (e.g.
near urban centers) and remote (e.g. marine) environ-
ments. Problem D describes an urban scenario and
problem E a rural one. The simulated conditions are
identical to those employed in problems B and C,
respectively.

Problem F: A stratospheric model. This test prob-
lem is based on the chemical mechanism that was
used in the NASA HSRP/AESA stratospheric models in-
tercomparison. The initial concentrations and the
values of the rate constants follow the NASA region
A scenario. There are 34 non-constant species in-
volved in 84 thermal and 25 photolytic reactions. No
emissions were prescribed.

Problem G: An aqueous model. This aqueous chem-
istry model contains 65 non-constant species involved
in 77 thermal and 11 photolytic gas-phase chemical
reactions, 39 liquid-phase chemical reactions and 39
gas-liquid mass transfer reactions. The gas-phase
mechanism is based on CBM-1V, while the liquid-phase
mechanism is based on a chemical scheme the authors
obtained from Matthijsen (1995). All dedicated ex-
plicit solvers tested in Sandu et al. (1996b) failed on
this problem.

3. ROSENBROCK METHODS

This section is devoted to a brief introduction to
Rosenbrock methods, put together for the conveni-
ence of readers from the atmospheric research com-
munity. Part of the notation has been adopted
from Hairer and Wanner (1991), where Rosen-
brock methods are described in much greater detail
(Sections IV.7, IV.10 and VL.3). An introductory ap-
pendix has been added for those readers who wish to
learn more about the theory behind Rosenbrock
methods.

3.1. The integration formula

Rosenbrock methods are usually considered in con-
junction with stiff ODE systems in the autonomous
form

y=f), t>to, ylto) = yo. (1)

This places no restriction since every non-auto-
nomous system y = f(¢, y) can be put in the form (1)
by treating time ¢ also as a dependent variable, i.e. by
augmenting the system with the equation /= 1. In
atmospheric applications it is often the case that the
reaction coefficients are held constant on each split
step interval; the chemical rate equations obtained
this way are in autonomous form.

Usually stiff ODE solvers use some form of implicit-
ness in the discretization formula for reasons of nu-
merical stability. The simplest implicit scheme is the

backward Euler method

Yn+1=Yn+ hf (Yu+1) (2)

where h = t,, —t, is the step size and y, the approxi-
mation to y(t) at time ¢ = t,. Since y,.,, is defined
implicitly, this numerical solution itself must also be
approximated. Usually some modification of the iter-
ative Newton method is used, again for reasons of
numerical stability. Suppose that just one iteration
per time step is applied. If we then assume that y, is
used as the initial iterate, the following numerical
result is found

Yn+1=Va+ kK, (3a)
k=hf(y,) +hJk, {3b)

where J denotes the Jacobian matrix f'(y,) of the
vector function f.

The numerical solution is now effectively computed
by solving the system of linear algebraic equations
that defines the increment vector k, rather than a sys-
tem of nonlinear equations. Rosenbrock (1963) pro-
posed to generalize this linearly implicit approach to
methods using more stages, so as to achieve a higher
order of consistency. The crucial consideration put
forth was to no longer use the iterative Newton
method, but instead to derive stable formulas by
working the Jacobian matrix directly into the integra-
tion formula. His idea has found widespread use and
a generally accepted formula (Hairer and Wanner,
1991) for a so-called s-stage Rosenbrock method, is

Ynt1 =Yat+ Z b;k; (4a)

i=1
i-1 i
ki=hf(ya+ Y ayk)+hJ Y yi;k; . (4b)
i=1 j=1

where s and the formula coefficients b;, o;; and y;; are
chosen to obtain a desired order of consistency and
stability for stiff problems. An introduction on the
properties of consistency, stability and stifl accuracy
for Rosenbrock methods is presented in an appendix.

For a reason explained later, the coefficients y;; are
taken equal for all stages,ie. y; = yforalli= 1, ...,s.
For s =1, y =1 the above linearized implicit Euler
formula is recovered. For the non-autonomous sys-
tem y = f(t, y), the definition of k; is changed to

i-1

¢
ki = hf(tu + o h’ Vn + Z aij k]) + 'Yihz ’é{(tm Yn)
j=1

i
+h-] Z '}'uk,’
ji=1
where

i-1 i
% = z Lipp i = Z Tij-

i=1 j=1
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Like Runge-Kutta methods, Rosenbrock methods
successively form intermediate results

i-1
Yi=y+ Y ek, 1<i<s, Q)
Jj=1

which approximate the solution at the intermediate
time points t, + ;. Rosenbrock methods are there-
fore also called Runge-Kutta-Rosenbrock methods.
Observe that if we identify J with the zero matrix and
omit the df/dt term, a classical explicit Runge-Kutta
method results.

Rosenbrock methods are attractive for a number of
reasons. Like fully implicit methods, they preserve
exact conservation properties due to the use of the
analytic Jacobian matrix. However, they do not re-
quire an iteration procedure as for truly implicit
methods and are therefore more easy to imple-
ment. They can be developed to possess optimal
linear stability properties for stiff problems. They are
of one-step type, and thus can rapidly change step
size. We recall that this is of particular importance for
our application in view of the many operator-split
restarts.

3.2. Reducing computational costs

Each time step requires an evaluation of the Jac-
obian J, s matrix—vector multiplications with J and,
assuming that y; = y, s solutions of a linear system
with (the same) matrix I — yhJ, accompanied with
s derivative evaluations. The multiplications with
J are easily avoided in the actual implementation by
a simple transformation (see Section IV.7 of Hairer
and Wanner, 1991). Because of the multistage nature,
the computational costs for a Rosenbrock method,
spent within one time step, are often considered
to be high compared to the costs of say a linear
multistep method of the BDF type. In particular, the
Jacobian update and the solution of the s linear sys-
tems, requiring one matrix factorization (LU-de-
composition) and s backsolves (forward-backward
substitutions) typically account for most of the CpU
time used by a Rosenbrock method. On the other
hand, if a Rosenbrock code solves the problem effi-
ciently in fewer steps than a BDF code needs, then the
CPU time for a whole integration using a Rosenbrock
method can become significantly less then for a BDF
method.

Sparsity. For large atmospheric chemistry models
the number of zeroes in J readily amountsto = 90%.
This high level of sparsity can be exploited to signifi-
cantly reduce the costs of the linear algebra calcu-
lations. For this task we use the symbolic preproces-
sor KPP (Damian-lordache and Sandu, 1995). Xpp
prepares a sparse matrix factorization with only
a minimal fill-in (see Table 1 in Sandu et al,, 1996a)
and delivers a FORTRAN routine for the backsolve
without indirect addressing. Altogether this means
that the numerical algebra is handled very efficiently.
The sparse matrix technique implemented in xpp

is based on a diagonal Markowitz criterion (see
Damian-Iordache and Sandu (1995) and Sandu et al.
(1996a) for more details).

Approximate Jacobians. It is conceivable to at-
tempt to further reduce the numerical algebra costs
through an approximate Jacobian.

@ One possibility is to use a time-lagged Jacobian
J=f(Yus+y) where n=0,—1, ... such that n+7n
is constant. If we define J this way, and in addition
keep h fixed, then I — yhJ is a constant matrix
during the number of times that the parameter 7 is
decreased; hence one can advance several time steps
using the same LU-decomposition. The derivation
of order conditions (which circumvents the order
reduction associated with the time-lagging of the
Jacobian) can be found in Verwer and Scholz (1983)
and Verwer et al. (1983b). Since the exact Jacobians
are used, conservation properties will still be main-
tained.

e Replacing J by a matrix with a simpler structure,
say a matrix of higher sparsity, may result in further
savings in linear algebra costs, but will destroy the
conservation properties. Also, the number of order
conditions will significantly increase (see the W-
methods of Steihaug and Wolfbrandt, 1979).

@ One can devise methods based on a partitioning of
the species into slow and fast ones where part of the
entries of J is put to zero. This approach does not
maintain conservation properties either and adds
the problem of devising a good partitioning strat-
egy.

In the current paper the above ideas are not ex-
plored: only exact Jacobians are considered.

3.3, Step-size control

General purpose stiff ODE solvers normally adapt
the step size in an automatic manner to enable small
step sizes at times when the solution gradients are
large and large step sizes when solution gradients are
small. For Runge-Kutta solvers an effective and
simple step size control can be based on a so-called
embedded formula

3
)—;n+l = yn+ Z B'ikh

i=1
which uses the already computed increment vectors k;.
The approximation j,., thus differs only in the
choice of the weights b; and hence is available at no
extra costs. Usually, the weights are chosen such that
the order of consistency of §,+,is p = p — 1,if pis the
order of y,.,. This suggests to use the difference
vector Est = J,+1 — Y.+ as a local error estimator.
In what follows we will denote the order of such a pair
of formulas by p(p). All the Rosenbrock solvers
(RODAS, RODAS3, ROS4 and ROS3) use embedded for-

mulas to estimate the local error.

The specific step size strategy goes as follows. Let
m denote the dimension of the ODE system. Let
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Tol, = atol + rtol | y,+4.x|, where atol and rtol rep-
resent a user-specified absolute and relative error tol-
erance and y,., ; the k-th component of y,,. Toler-
ances may differ componentwise, but are here taken
equal for all components for simplicity of testing.

Denote
1 & Estk 2
Err= [— -— .
i mkgl (Tol,)

The integration step is accepted if Err < 1 and rejec-
ted otherwise and redone. The step size for the new
step, both in the rejected and accepted case, is esti-
mated by the usual step size prediction formula

Roew = h min (10, max (0.1, 0.9/(Ern)'#+ 1))

At the first step after a rejection, the maximal growth
factor of 10 is set to 1.0. Further, h is constrained by
a minimum h,,;, and a maximum h,,,, and at any start
of the integration for each operator-split interval we
begin with a starting step size h = hg,,. A rejection of
the first step is followed by a ten times reduction of h.
These step size constraints will be specified later. Be-
cause the maximal growth factor is equal to 10, the
step size adjusts very rapidly and quickly attains large
values if the solution is sufficiently smooth and
h = Ry is chosen small.

4. THE SOLVERS

In this section we list all solvers which have been
tested. The solvers RODAS3 and ROS3 are new. For
these we give the defining formula coefficients. All
other solvers are existing ones and are described only
briefly. The Rosenbrock solvers have order of consist-
ency 3 or 4. Preliminary experiments with two second
order solvers, based on Method III from Verwer
(1977) and on the complex-valued method from
Rosenbrock (1963) (advocated in Dnestrovskaya
et al., 1994) gave disappointing results,

RODAS: This Rosenbrock solver from Hairer
and Wanner (1991) is based on a stiffly accurate
pair of order 4(3). Both formulas are L-stable.
The number of stages s equals six and also six deriva-
tive evaluations and six backsolves are used. In Sandu
et al. (1996b) RODAS was one of the best solvers
tested.

RODAS4: This Rosenbrock solver is also taken
from Hairer and Wanner (1991). It implements a num-
ber of 4-stage 4(3) pairs which all require four deriva-
tive evaluations and four backsolves. Hence, per step
ROS4 is somewhat cheaper than RODAS. However, in
Hairer and Wanner (1991) a comparison is presented
favouring RODAS, which is attributed to the stiff accu-
racy property (the methods of ROS4 are not stiffly
accurate). We have tested its L-stable version (see
Table 7.2, in Hairer and Wanner, 199!) and found
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that generally its performance was very close to that
of ROS3 and RODAS3. We therefore decided to omit
presenting results for ROS4.

RODAS3: The third Rosenbrock solver was de-
signed along the same principles as RODAS. It is based
on a stiffly accurate, embedded pair of order 3(2). The
number of stages is s = 4, requiring four backsolves
but only three derivative evaluations are used. Hence
per step it needs less work than RODAS, but it is one
order lower. We have selected this pair since we aim at
optimal efficiency for low accuracies. To the best of
our knowledge, this pair of formulas has not yet been
proposed elsewhere. The coefficients x;; and y;; are

0
0 0
@)=, 0 :
34 —14 12 0
12
T 12
Gd=| _14 —1a 12
12 112 —23 172

and the weights are
(b)) =(5/6 —1/6 —1/6 1/2),
(b)=(3/4 —1/4 172 0).

Both formulas are L-stable. Observe that the
embedded one is defined by the final intermediate
approximation Y. The values of y for L-stability are
presented in Table 1.

ROS 3: The fourth Rosenbrock solver is based on
an embedded pair of order 3(2) and is also new. The
number of stages is s = 3 involving three backsolves
and two derivative evaluations. The third order
method is L-stable and the embedded second order
method is strongly A-stable (R(oc) = 0.5). The stiff
accuracy property is not valid for ROS3. The method
was constructed under the design criteria: order three,
L-stability for both the stability function and the
internal stability functions, and a strongly A-stable
second order embedding. The internal stability func-
tions are associated with the intermediate approxima-
tions (5). Imposing stability for these internal
functions was advocated in Verwer (1977) as a means
to improve a Rosenbrock method for strongly nonlin-
ear stiff problems. We note in passing that if the order

Table 1. Values of y for L-stability

15}

L-stability, p >s — 1 L-stability. p = s

y=1

y=02+ /202
3 = 043586652
5 = 0.57281606

Q-V2<sr<+ /D02
0.18042531 < y < 218560010
0.22364780 < 7 < 0.57281606

HSwW -
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of consistency equals 3 and s = 3, then the require-
ment of L-stability prevents the existence of an L-
stable second order embedding. The coefficients are
y = 0.43586652150845899941601945119356
y21 = — 0.19294655696029095575009695436041
y32 = 1.74927148125794685173529749738960

by = — 0.75457412385404315829818998646589

I

b, = 1.94100407061964420292840123379419

— 0.18642994676560104463021124732829

by
b
b, = 2.81745131148625772213931745457622

— 1.53358745784149585370766523913002

b5 = — 0.28386385364476186843165221544619.

The remaining coefficients are a«y; = a3, =y and
@32 =731 =0.

VODE. This solver from Brown et al. (1989) is
a general purpose BDF Gear code and can be regarded
as a successor of LSODE (Hindmarsh, 1983), which is
popular in the field of atmospheric chemistry as a ref-
erence code. In Sandu et al. (1996b) YODE performed
satisfactorily and we include it again for comparison
with the Rosenbrock solvers. VODE uses the same
sparsity routines as the Rosenbrock solvers.

TWOSTEP. This solver from Verwer (1994), Ver-
wer and Simpson (1995), and Verwer et al. (1996b) is
based on the second order BDF formula and uses,
instead of the usual modified Newton method,
a Gauss~Seidel or Jacobi iteration for approximately
solving the implicit BDF relations. In the tests of this
paper only the Gauss-Seidel iteration is used. It was
developed as a special purpose, explicit solver for
atmospheric chemistry problems. In Sandu et al.
(1996b) it outperforms a number of solvers based on
the QssA approach. We include it again for compari-
son with the Rosenbrock solvers. The same imple-
mentation as in Sandu et al. (1996b) is used, which
always performs two Gauss—Seidel iterations and au-
tomatically adjusts the step size.

SEULEX. The solver SEULEX is also taken from
Hairer and Wanner (1991). It bears a relationship
with the Rosenbrock solvers, as it builds up a solution
from the (non-autonomous) linearly implicit Euler
method, ie, ypsy = yn+ I —hD) " hf(ts yn), by
Richardson extrapolation. The use of this Euler
method in an extrapolation code for stiff ODEs was
first suggested in Deuflhard (1985) A rule of thumb is
that the virtue of extrapolation manifests itself most
clearly when high accuracy is required (see also Hairer
and Wanner, 1991). We have included SEULEX in our
benchmarking as the extrapolation approach is
mentioned by Zlatev (1995) (see Section 3.4.3) as a vi-
able one for atmospheric ODE problems, although no
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results seem to have been reported yet. The same
sparse linear algebra as used for the other solvers was
implemented. The extrapolation sequence defined by
iwork(4) = 4 was used. This sequence was found to
work well for our application. Other settings are given
default values.

EBI. The Euler backward iterative (EBI) method
was proposed by Hertel et al. (1993). Being based on
the Euler backward implicit formula (2), its main
feature is that, instead of using Newton’s method,
the implicit solution is approximated through a semi-
analytical, problem dependent iteration process. This
process groups species together which allow an exact
solution of the implicit equations after putting part of
them at the old time level. Species equations which do
not fit in an appropriate grouping are treated with
a form of Jacobi iteration. Satisfactory results are
reported (Hertel et al., 1993) for different scenario’s
based on the CBM-IV mechanism. The approach can
also be applied when using higher BDF methods since
use of these implicit methods leads to a similar system
of equations, but a considerable drawback is that the
iterative solution method is adapted to the particular
chemistry scheme. We therefore have tested the
method only for the TMk model, using an implemen-
tation obtained from Dentener (1996). This implemen-
tation contains no local error control mechanism so
that constant step sizes are taken.

5. SET-UP OF EXPERIMENTS

Splitting interval. The tests are intended to simulate an
operator splitting environment. In air quality models, most
often a symmetric splitting is used, for example:

TYOTyOTYOC™OTYOTyOTY

where T4' stands for transport in direction j for a time
interval At and C is the chemistry solution operator. Thus
the restart time or splitting interval equals 2At. For Problem
A we have chosen a restart time of 40 min and for all other
problems 60 min. A restart time of 60 min corresponds to
a transport step size of 30 min due to the symmetry of
splitting. For the two urban scenarios (test problems B and
D) additional simufations were carried out with a restart
each 15 min; this corresponds to a splitting interval of
7.5 min for the transport scheme.

Emissions. For all problems except the stratospheric
problem F, emissions are prescribed. In the experiments we
have computed emissions at the beginning of each split
interval, simulating a form of operator splitting. This means
that species solutions for which emissions occur, are made
discontinuous so that at any restart initial transients occur.
We thus simulate, to some extent, what happens in a true
transport computation where one also encounters initial
transients at any restart. As a rule, strong initial transients
make the nonlinear stiff problems harder to solve. If we
would compute the emissions along with the integration
over the split intervals, then all species solutions remain
continuous at restart.

Steering parameters. For variable step size solvers the
important steering parameters are hy,q, hmio and the local
error tolerances atol, rtol. A user-specified hy,, is impor-
tant. Without a prescribed minimum, step sizes can result as
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small as the shortest time constants, sometimes even
% 107%-10"°s. Step size values close to these extremely
short time constants are redundant, since the minimal time
constants of importance for photochemical models lie
between 1 s and 1 min, approximately. On the temporal scale
of interest, species with a smaller time constant quickly reach
their (solution dependent) steady state when they are pertur-
bed. On the other hand, most solvers require a relatively
small step size at the start to resolve the initial transients.

Through trial and error we have prescribed the following
values for hm;, and h,,, which are imposed for all solvers
(except EBI): for the tropospheric Problems A-E, by =0.1's
and Ay, =60s; for the stratospheric Problem F,
Amin = Byany = 0.001 s; and for the aqueous Problem G,
Amin = hyare = 0.0001 s. These values concern the 1 h restart
time. For the tropospheric problems B, D with the 15 min
restart time, we have taken h,,, = hpa = 0.1s.

For all problems and all solvers except EBI, we have
prescribed the absolute tolerance value atol = 0.01 miccm™?
along with a sequence of relative tolerance values rtol such
that effectively relative local error control is imposed. For
a given method, the different data points in the accu-
racy—efficiency plots correspond to this sequence. The values
used are .

rtol = 1.0,3.0x 1071, 1.0x 1077,3.0x1072,1.0x 1072,
3.0x1073,1.0x1073,30x 1074, 1.0 x 1074,

Needless to mention that the actual resulting accuracies are
always different from the given local tolerances. The toleran-
ces merely govern the local error and step size control. Also
note that for very large values of rtol, say rtol > 0.1, the
control is very loose so that a negative number of significant
digits (6) or even a breakdown may be the result. Note that
a negative number of significant digits (6) means relative
errors greater than 100%. The Rosenbrock solvers RODAS,
ROS3 and the BDF solver VODE showed breakdowns more
often, RODAS3 only for rtol = 1, while SEULEX never failed
and always returned a positive SDA. Also TWOSTEP never
encountered a breakdown, only minor negative SDA values.
Data points corresponding to a breakdown or a negative
result, as well as points with sDA > 4 or with an exception-
ally large cPU time have been skipped from the plots. We
have used a wide range of tolerances merely for illustrative
purposes.

Accuracy. The numerical results were compared to a very
accurate reference solution (given by RADAUS, rtol = 10712,
componentwise set atol) using a temporal modified root
mean square norm of the relative error. With the reference
solution y and the numerical solution y available at
{ta = 1o + nAt,0 < n < N}, we first compute for each species
k

1
N z

where #, = {0 < n < N: y(t,) > a}. This value is then rep-
resented in the plots through the number of significant digits
for the maximum of ER,, defined by

yu(ta) = Pulta))?

Yalty)

s

SDA = - log,o(max; ER,). 6)

Note that if the set #; is empty for a chosen threshold g, the
value of ER, is neglected. This threshold factor serves to
eliminate chemically meaningless large relative errors for
concentration values smaller than a mlccm ™3 in the error
measure. We used a = 10° micem™2 for all tropospheric
problems and a = 10* mlccm ™3 for the stratospheric one.
Additional experiments performed with @ = 1 mic cm ™2 led
to nearly the same conclusions. In all plots presented in the
remainder for problems B-F, including those for the 15 min
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restart times for B, D, we have used N = 120. So we always
sample at the endpoint of each hour over the whole 5 days.
For Problem A we sample at the end of every 40 min.
Observe that spA =2 means 1% accuracy in the error
measure used. In discussing the results in the next section we
focus on this accuracy level.

Timing. The answer to the question of which method is
“the fastest” may depend also on the machine. In order to
measure the influence of the hardware on the relative perfor-
mance of integrators we have performed all the numerical
experiments on two completely different architectures,
namely a HP-UX 935 A workstation (double precision, =~ 14
digits) and a Cray C98 (scalar mode, single precision, ~ 14
digits); in addition, some of the experiments were also repeat-
ed on a sGI workstation (double precision, = 14 digits). Very
similar results were found. As a consequence, in what follows
only the HP work-precision diagrams are presented. We plot
the SDA values against efficiency, ie. the measured CPU
times on a logarithmic scale in unit seconds.

Reaction coefficients. In practice the rate coefficients can
be implemented in two ways, either as time-continuous func-
tions or as functions piecewise constant per split interval.
The time-continuous function implementation of the ther-
mal rate coefficients may lead to a large number of exponen-
tial function evaluations per time step, which are very costly.
For example, with Rosenbrock methods we observed that
these calculations can be as expensive as the sparse matrix
factorization. Since for the actual practice true time depend-
ency seems redundant, we have used piecewise constant rate
coefficients per operator-split subinterval (temperature and
solar angle frozen using values halfway). Observe that in
(Sandu et al., 1996b) time-continuous values were used. We
did again a number of tests with time-continuous values in
the current investigation but observed no notable differences
in the relative performances of the solvers.

6. RESULTS AND ILLUSTRATIONS

6.1. Problem A: the TMk model

The work precision diagram is given in Fig. 1.
Results are presented for all the solvers discussed
above, including EBI. The EBI results are obtained with
constant step sizes of length

h = 40/80, 40/40, 40/20, 40/10, 40/6, 40/5, 40/4,
40/3 min.

The number of iterations within EBI was in all runs
equal to 8 (cf. Dentener, 1996). The results show that
the variable step size Rosenbrock solvers are clearly
superior to all others for 1% accuracy. SEULEX ap-
pears to be faster than VODE, but slower than the
Rosenbrock codes. However, the gap between these
solvers decreases for higher accuracies. Among the
Rosenbrock codes, RODAS3 and ROS3 have similar
performance in the low accuracy domain; they are
followed closely by RODAS. EBI and TWOSTEP perform
reliably but cannot compete with RODAS3 over the
whole accuracy range.

6.2. Problems B and C: the CBM-IV model

In Fig. 2 the results for test problems B (1h re-
start time) and C are presented. For the rural prob-
lem all Rosenbrock solvers perform equally well,
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Fig. 1. Work-precision diagram for test problem A (Tmk)

Sparse RODAS3 (solid line with “*"), Sparse rOs3 (solid line

with “x”), Sparse RODAS (solid line with “0™), TWOSTEP SEIDEL

{dotted line with “x™), Sparse VODE (dotted line with “o™),

Sparse SEULEX (dashed line with “o™ and EB! (dash-
dotted line with “o™).

v

followed by SEULEX, while VODE and TWOSTEP fall
behind. This also holds for the urban problem, but
now a distinction exists between RODAS3, ROS3 and
SEULEX, RODAS. Up to about 3 digits RODAS3 and
rOS3 perform best. For accuracies higher than 3 digits
RODAS takes over.

The results for the urban problem with a 15 min
restart time are presented in Fig. 3. The relative per-

A SANDU et al.

formances between the solvers remains almost the
same. The main difference with the 1 h restart time
is seen in the CPU times. All integrations become
roughly 3 to 4 times more expensive, showing that
all solvers spend most of their time in the start-up
phase. Recall that the start-up phase has become
longer as we have lowered h,, from 60s to
hoe = 0.1 5. The 60 s starting step size was found too
large for the Rosenbrock solvers for a good perfor-
mance. This indicates that they must spent quite an
effort in resolving the initial transients. However, they
remain competitive, in particular ROS3 and RODAS3.
The figure also contains results for the most simple
QssA solver we previously applied in Sandu er al.
(1996b). However, this solver again lags behind to all
others.

6.3. Problems D and E: the AL model

For problems D and E with 1 h restart time the
results are given in Fig. 4. It is interesting to compare
code performances to those obtained for the CBM.1v
model since the same urban and rural scenarios are
simulated. They differ, however, in the number of
species and reactions, the AL mode! being consider-
ably larger. For the urban problem RODAS3 and ROS3
are again the fastest, up to 3 digits, while for higher
accuracies RODAS becomes better. SEULEX now per-
forms somewhat less than for the CBM-IV model,
whereas TWOSTEP is notably better positioned. In the
rural case all solvers perform close, except VODE; both
in the rural and urban case VODE falls behind. No-
table is the close performance of ROs3 and RODAS3.
As a general conclusion, Rosenbrock codes are
again superior to the BDF ones. The better relative
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Fig. 2. Work-precision diagram for test problems B and C (cBM-1v): Sparse RODAS3 (solid line with “*”),
Sparse rOS3 (solid line with “x™), Sparse RODAS (solid line with “0”), TWOSTEP SEIDEL (dotted line with “x™),
Sparse vODE {dotted line with “0™) and Sparse SEULEX (dashed line with “o”).
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Fig. 3. Work-precision diagram for test problems B (CBM-Iv urban) and D (AL urban), with a restart each

15 min: Sparse RODAS 3 (solid line with “*”), Sparse ROs3 (solid line with “x”), Sparse RODAS (solid line with

“0”), TWOSTEP SEIDEL (dotted line with “x™), Sparse VODE (dotted line with “0”), Sparse SEULEX (dashed line
with “0”) and Qssa (dash-dotted line with “x™).
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Fig. 4. Work-precision diagram for test problems D and E (AL): Sparse RODAS3 (solid line with “*”), Sparse
rOS3 (solid line with “x”), Sparse RODAs (solid line with “0”), TWOSTEP SEIDEL (dotted line with “x™), Sparse
vODE (dotted line with “o0”) and Sparse SEULEX (dashed line with “o0”).

positioning of TWOSTEP (as compared to the CBM-IV
cases) is most likely due to the increased number of
species in AL.

The results for the urban problem with a 15 min
restart time are presented in Fig. 3. We see more or
less the same behaviour relative to the | h restart
time as for the CBM-Iv problem. Now TWOSTEP
has become competitive to RODAS3 and ROS3 in the
10% error range, while the curve for RODAS reveals
a rather strong non-monotonic accuracy-efficiency

behaviour. Again the QSsA solver we previously ap-
plied in Sandu et al. (1996b) severely lags behind all
others.

6.4. Problem F: the stratospheric model

The work-precision diagram given ip Fig. 5 again
reveals a very good performance of the Rosenbrock
solvers compared to the other three. The higher order
of accuracy of RODAS is again borne out and again
notable is the close performance of ROS3 and RODAS3.
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Fig. 5. Work-precision diagram for test problem F (STRATO):

Sparse RODAS3 (solid line with “*”), Sparse r0OS3 (solid line

with “x™), Sparse RODAS (solid line with “0”), TWOSTEP SEIDEL

(dotted line with “x™), Sparse VODE (dotted line with “0™) and
Sparse SEULEX (dashed line with “o0”).

VODE and SEULEX have similar performance, but are
more than 2 times slower than the Rosenbrock codes
in the 1% accuracy range. TWOSTEP follows at a large
distance. We should recall, however, that for this
problem no emissions were prescribed.

6.5. Problem G: the aqueous model

As pointed out in Sandu et al. (1996b) this test
problem is the most difficult one from the numerical
point of view. The Jacobian f'(y) of the derivative
function (1) contains stiff eigenvalues for which the
relation A; ® — L; (with L, the destruction term asso-
ciated with species i) does not hold. Such eigenvalues
are due to the rapid gas—liquid phase interactions and
cannot be associated with certain species; for this
reason, all the explicit solvers tested in Sandu et al.
(1996b) failed to efficiently integrate the AQUEOUS
model. As a consequence, in the present work TWO-
STEP was not applied to this problem. The results
plotted in Fig. 6 for the other solvers are very much in
line with those for the stratospheric problem. In the
low accuracy range the Rosenbrock family has the
lead again, the performances of RODAS, RODAS3 and
ROS3 being very close to each other. SEULEX is about
three times slower for 2 accurate digits, but seems to
become the best for more than 4 digits; for higher
accuracies, VODE changes slope and is not competi-
tive.

7. OVERALL CONCLUSIONS AND REMARKS

The answer to the question of which stiff integrator
is “the best” for being used in air quality models
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Fig. 6. Work-precision diagram for test problem G (AQuUE-

ous): Sparse RODAS3 (solid line with “*”), Sparse ROS3 (solid

line with “x”), Sparse RODAS (solid line with “0”), Sparse

VODE (dotted line with “0™) and Sparse SEULEX (dashed line
with “0”),

depends on a multitude of factors, some of the most
important being the specific chemical mechanism em-
ployed, the desired accuracy level and the hardware
on which the code runs. In the present work we
considered a variety of chemical models, we covered
the whole range of accuracy levels of practical interest
and tested everything on two machines with com-
pletely different architectures. The set of tested codes
includes TWOSTEP and sparse versions of the extra-
polation code SEULEX, of the state-of-the-art BDF
codes LSODE, VODE, the Runge-Kutta-type code
SDIRK4 and the Runge-Kutta—Rosenbrock-type
codes RODAS, RODAS3, ROS3 and ROS4. We have not
considered in this benchmark the widely used BDF
code SMVGEAR (Jacobson and Turco, 1994). This
code is organized to specifically target a vector
machine; running it in scalar mode on box models
would lead to less than optimal results. We expect
that for box models the performance of SMVGEAR will
not differ much from that of sparse LSODE and VODE,
as it is based on the first BDF code from Gear (1971).
In the numerical ODE literature, this first Gear code
has been replaced by the related solvers LSODE and
VODE.

Although we have used utmost precaution in imple-
menting the models and in testing the codes, still
undiscovered errors and/or less optimal settings of
user parameters may have affected part of the nu-
merical results. The interested reader therefore is
invited to repeat the experiments using our codes
from (CGRER ftp site, 1996) and to join us* in this

*Contact Sandu (sandu@cgrer.uiowa.edu) or Verwer
(janv@cwi.nl).
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benchmark activity. The present results give rise to
the following main conclusions:

e For all the test problems considered here and with-
in 4 digits of accuracy the Rosenbrock solvers
clearly provide the most cost-effective solutions
among the codes tested in this paper and in Sandu
et al. (1996b).

e The relative ranking between the four sparse
Rosenbrock solvers differs per problem, but only to
a limited amount. For lower accuracies of practical
interest RODAS3 and ROS3 are usually the best. As
expected, for higher accuracies RODAS is mostly
competitive; the performance of the solver ROS4 is
close to that of RODAS3 and ROS3. In passing we
note that our test results do not consistently show
that the property of stifl accuracy is truly advant-
ageous for nonlinear problems.

e The above conclusion about the computational
speed and accuracy of Rosenbrock methods is also
supported by the comparison with the EBI method
for Problem A and with the QssA method for Prob-
lems B, D with a 15 min restart time (the latter has
been tested more extensively in Sandu et al., 1996b).
Noteworthy is that the Qssa solver lags very far
behind in all our experiments.

e Also robustness and ease of use are very important
since in actual 3D transport a subtle tuning of the
ODE code is cumbersome due to the large variety of
conditions that will occur at different grid points. In
this respect the Rosenbrock solvers are advocated
as well. With the preprocessor KPP at hand, they
are easy to use.

e Concerning robustness we have to point out that
large values of rtol ( > 0.1 say) combined with too
large values for hy;, and hg,, can cause the Rosen-
brock solvers to drift away from the real solution,
see Table 2. In these cases the initial transients are
not resolved sufficiently accurately. Implicit solvers
can also get into trouble here through convergence
failures in the iterative modified Newton process.
These problems can easily be avoided by choosing
hmio and hg, sufficiently small and rtol <0.01.
Since Rosenbrock solvers may increase the step size
rapidly, they can remain cost effective even with
smaller starting values.

e The extrapolation code SEULEX never ran into
a breakdown or returned a negative result. Appar-

ently this code works very robust. However, in the
low accuracy range SEULEX is always significantly
more expensive than RODAS3.

With regard to robustness, also EBI performs out-
standing. The method does not break down when
used with a very large step size. We have only
applied it to the TMk model we got from Dentener
(1996), but our experience is in accordance with
that reported in Hertel et al. (1993) and Krol (1996)
for different variants of the CBM-1v mechanism. Of
course, the main drawback of the EBI approach is
that it is intertwined with the chemistry and needs
to be adjusted and retested any time the chemistry
model is changed. The low accuracy of the solver is
mainly due to the use of the first order Euler back-
ward method. Implementation of the EBI approach
with a higher order solver (e.g. TWOSTEP) may lead
to a notable improvement of accuracy.

TWOSTEP also performs extremely well with regard
to robustness. The entries in Table 2 are due to
negative SDA values, rather than breakdowns. This
solver can handle both very large step sizes and
crude tolerances. It seems to have only one serious
limitation, which concerns gas-aqueous phase
models. These models do require a linearly or fully
implicit solver (Sandu et al., 1996b). Even though in
our test problems it lags behind Rosenbrock sol-
vers, TWOSTEP remains, due to its explicit nature, an
exceflent candidate for very large tropospheric gas-
phase problems with very small operator split steps.
An additional advantage is that the Gauss~
Seidel approach on which TWOSTEP is based, can be
effectively extended towards a tridiagonal
Gauss—Seidel approach for the coupled solution of
chemistry and vertical turbulent diffusion (Verwer
et al., 1996a; Spee et al., 1996).

Often the work-precision curves are non-mono-
tonic, revealing the situation that more CPU time is
spent, yet a less accurate solution is obtained. This
non-monotonicity is seen mostly for very low toler-
ances and is caused by the step size selection pro-
cess (and dynamic iteration strategies in implicit
solvers). These work out non-smoothly, as is for
example shown very clearly in the diagrams in
Hairer and Wanner (1991). Inspection of our dia-
grams shows that the only variable step size solver
yielding monotonic curves in all tests presented is
TWOSTEP.

Table 2. The values of rtol for which the codes either break down or give
a solution with more than 100% relative error (negative SDA)

Test
Code B D E F G
RODAS 1,0.3,0.1 1,03 — — —
RODAS3 1 1 — — —
ROS3 1,03 1,03 — — —
TWOSTEP 1,03 1 — 1,03,0.1 all
VODE 1 1,03,0.1 1 1,03 1
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o Finally, one word to the interested modellers. In
this paper we presented several options not con-
sidered before for choosing a chemical solver. As
mentioned above, the performance depends on
a multitude of factors; thus selecting an integrator
should involve testing the most promising codes on
the particular application considered. In this con-
text our benchmark results should be thought of as
guidelines, but they are no substitute for a careful,
problem specific testing.
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APPENDIX

Consistency and stability of Rosenbrock methods

The performance of an integration method largely de-
pends on its order of consistency and its stability proper-
ties. Again for the convenience of readers from the atmo-
spheric research community, in this Appendix we will briefly
discuss the consistency property for the Rosenbrock method,
as well as some useful results from the linear stability theory.
Also some attention will be paid to the notion of stiff-
accuracy.

Consistency conditions. The consistency conditions are
found from a formal Taylor expansion of the local error. Let
¥a+3 = E(y,) be a compact notation for the Rosenbrock
method. The difference

8,(t) = EQ(n) ~ y(t + h) U]

where y is the exact (local) solution of the ODE system
¥ = f(y) passing through y(t), is called the local error and the
largest integer p for which

S,()=0Mh**"Y), h=0

is called the order of consistency. Hence 8,(t) is the error after
a single step from an exact solution, while the order reveals
how rapidly é,(t) approaches zero for a decreasing step size.
Assuming sufficient differentiability of y and f, the order p is
determined by Taylor expanding the local error and equat-
ing to zero the resulting terms up to the p-th one. This leads
to the so-called consistency conditions which are expressions
in the formula coefficients. Satisfying these conditions gives
the desired order p. While the expansion is technically com-
plicated and the resulting conditions can become quite
lengthy for a large p, the derivations are conceptually simple.
For a maximum of four stages, the conditions for order p < 3
are

p=1 b +by,+by+b,=1 (8a)

p=2 bRy +bfy+bBi=5—7 (8b)

p=3 bya}+bya}+bai=1} (8¢)
byB32B87 + ba(Baz B + BasB3)
=t~-r+y (8d)

where

i-1 i-1
Bij= 2y + vip a; = Z Qs Bi= 2 B
j=1 Jj=1
The conditions for p <5 and general s can be found in
Section IV.7 of Hairer and Wanner (1991).

Linear stability. Let ¢, = y, — y(t,) denote the global er-
ror: the difference between the sought exact solution of the
ODE system y = f(y) and the computed approximation. The
global error at the forward time level r = ¢, ., can be seen to
satisfy

&y = Ele, + y(t,)) — EQ() + 8,(t) 9

showing that this error consists of two parts: the local error
(7), which is a functional of the exact solution, and the
difference

E(e, + y(t)) — EG/(t,)

where E(e, + y(t,)) represents the actual Rosenbrock step
taken from the approximation y, = ¢, + y(t,) and E(y(t,))
represents the hypothetical Rosenbrock step taken from
the exact solution y(r,). This difference term reveals a de-
pendence of ¢,,, on &, For a proper functioning of the
Rosenbrock method it is desirable that, in an appropriate
norm | |,

I E, + y(t) — EGtD | < &, |l (10)
because then the integration is stable in the sense that
lewer I < g, ll + 11002 1.

This error inequality is elementary, but also fundamental for
one-step integration methods. It simply shows that all local
errors add up to the global error,

n=1
e < Y 18,

i=o0

if we assume that at the initial time t,, the error ¢ = 0. From
inserting 8, (¢;) = O(hP* '), while assuming h = 0 and n —»
such that t, = nh is fixed, it follows that ¢, = O(h"). By
adding up all local errors one power of h is lost, resulting in
a convergence order p.

If equation (10) does not hold, the global error can accu-
mulate unboundedly. The integration is then unstable and of
no practical use. Whereas for general nonlinear stiff ODEs
from chemistry no stability analysis exists for Rosenbrock
methods, théir stability is well understood for stable, linear
systems

y=Jy (1

with eigenvalues 2 satisfying Re(4) < 0. From practical ex-
perience we know that linear stability often provides a satis-
factory prediction of stability for nonlinear problems if J is
interpreted as the Jacobian matrix f* (y). This interpretation
is based on a linearization argument, see Dekker et al. (1984)
and Hairer and Wanner (1991). Applied to (11), the Rosen-
brock method y, ., = E(y,) reduces to the linear recursion

yu+l =R(h‘l) yn (]2]

where R(hJ) is a matrix-valued rational function that ap-
proximates the matrix-valued exponential function e, being
the solution operator of (11). By inserting (12) into the error
equation (9), we obtain

&1 = R(hJ)e, + d)(t,)

or, equivalently,

mn=1
& =R"(W)eo + Y R*™'7I(hD)S,(1)

j=0

where, as before, n = 1, 2, ... . We see that the demand of
stability can now be expressed as boundedness of powers of
R(hJ), ie.,

IR*(hNHI <C (13)

where C is a constant which is independent of n and hJ. This
independence guarantees unconditional stability in the sense
that no restrictions exist on the step size. Condition (13)
holds if we require that the scalar rational function R(z),
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which is called the stability function, satisfies | R(z)| < 1 for
arbitrary z = hi, Re(z) <0. This is the famous property
of A-stability originally proposed by Dahlquist (see
Hairer and Wanner, 1991). We note in passing that for our
application we do not really need A-stability, since for atmo-
spheric chemistry the eigenvalues of the Jacobian are always
located in the neighbourhood of the real axis. So we actually
need the boundedness property only near the negative half
line.

We will impose the condition of L-stability, which in
addition to A-stability, requires R(o0) = 0. L-stability is
known to lead to a somewhat more robust approach and
better mimics the damping property of e* for Re(z) < 0. The
property of L-stability is easily verified. The stability func-
tion R is found by applying the method to the scalar problem
y = Ay. This yields a rational function of the form

P(2)
(1 —yz§*

where P is a polynomial of degree ', s’ < s, and the degree of
P is less than or equal to s’ — 1 if the stability function is to
be L-stable. Mostly, s’ is equal to the number of stages s, but
s’ can be smaller. In this paper we only consider methods for
which s’ = s.

Stability properties of rational functions of the type (14)
have been studied extensively. For our purpose the following
results are very useful. Suppose that the order of consistency
p of the Rosenbrock method is also the order of consistency
of R, ie., p is the largest integer for which R(z) =e* +
O(z**!), z = 0. For L-stable functions we then usually have
p=sorp = s — 1. In both cases R is uniquely determined by
. For the case p = s — 1, L-stability holds for certain inter-
vals for y and if p = s for one particular value of y (see Section
IV.6 and Table 6.4 in Hairer and Wanner, 1991). By way of
illustration we list the values of y for 1 < s <4 in Table 1.

Stiff accuracy. Stiff accuracy is a property related to the
Prothero—Robinson model problem

¥ =4y — o) + (1)
where ¢ is some known function. Its solution reads
(e + h) =e*(y(t) — d()) + $(t + h)

and if Re(4h) - — oo, the solution y(t + h) - @(t + h), irre-
spective the size of h. Prothero and Robinson have investi-
gated under which conditions on the formula coefficients,
implicit Runge-Kutta solutions mimic this property. Be-
cause, then a method can handle this particular transition to

R(z) = (14)
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infinite stiffness in an accurate manner, which has been the
main motivation for this test model (see Dekker and Verwer,
1984; Hairer and Wanner, 1991). They proposed the term
stiff accuracy for this phenomenon.

For the current test model, the global error recursion (9)
reads

Envq = R(2)e, + 9, (t,)

where 6,(1,) depends in a certain way on z = hi, h and ¢.
Hairer and Wanner (1991) show, in Section IV.15, that for
any consistent Rosenbrock method,

8,(t,) = O(h*/z), forh—0, z— w,

oy +yg=b(i=1,...,5) and 2,=1. (15)

Hence, the desired transition property holds for the local
error and because (15) also implies R( o0 ) = 0, this property
holds for the global error as well. They therefore call
a Rosenbrock method stiffly accurate if (15) holds.

For general nonlinear stiff problems the virtue of stiff
accuracy is not so clear. In Hairer and Wanner (1991) it is
argued that stiff accuracy is advantageous when solving stiff
differential-algebraic systems with a Rosenbrock method (cf.
Proposition 3.12, Section V1.3). For ODEs a similar argument
exists which goes as follows. Suppose equation (15) holds.
A straightforward computation then reveals the following
relation between y, , , and the final stage quantities k,and Y,

ky=hJy,.. + hf(Y)—hJY, (16)
Assuming that J is invertible, we may write
Yasr = Y, = (h)T (RF(Y) ~ k,) (1

which is the result of one modified Newton iteration for the
equation

hf(y) — k,=0 (18)

using Y, as starting value. For given k, this equation can be
interpreted as a collocation equation for a numerical solu-
tion. Hence, if the property of stiff accuracy holds, if J is
invertible and Y, a sufficiently good starting guess, then the
Rosenbrock solution y, ., is close to a collocation solution.
Observe that for linear systems y =Jy we always have
hJy, ., = k,according to equation (16). If the final increment
vector k, is close to a true derivative, this collocation prop-
erty seems recommendable. Other arguments supporting the
notion of stiff accuracy for nonlinear problems do not exist
as far as we know.



